Computational intelligence approaches and linear models in case studies of forecasting exchange rates
نویسندگان
چکیده
Artificial neural networks and fuzzy systems, have gradually established themselves as a popular tool in approximating complicated nonlinear systems and time series forecasting. This paper investigates the hypothesis that the nonlinear mathematical models of multilayer perceptron and radial basis function neural networks and the Takagi–Sugeno (TS) fuzzy system are able to provide a more accurate out-of-sample forecast than the traditional auto regressive moving average (ARMA) and ARMA generalized auto regressive conditional heteroskedasticity (ARMA-GARCH) linear models. Using series of Brazilian exchange rate (R$/US$) returns with 15 min, 60 min and 120 min, daily and weekly basis, the one-step-ahead forecast performance is compared. Results indicate that forecast performance is strongly related to the series’ frequency and the forecasting evaluation shows that nonlinear models perform better than their linear counterparts. In the trade strategy based on forecasts, nonlinear models achieve higher returns when compared to a buy-and-hold strategy and to the linear models. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
A hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملThe Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Abstract: Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting mod...
متن کاملA laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir
The piano key weir (PKW) is a type of nonlinear control structure that can be used to increase unit discharge over linear overflow weir geometries, particularly when the weir footprint area is restricted To predict the outflow passing over a piano key weir, the discharge coefficient in the general equation of weir needs to be known. This paper presents the results of laboratory model testing of...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 33 شماره
صفحات -
تاریخ انتشار 2007